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Abstract—This paper addresses the problem of goal-directed
robot path-planning in the presence of uncertainties that are
induced by bounded environmental disturbances and actuation
errors. The offline infinite-horizon optimal plan is locally updated
by online finite-horizon adaptive re-planning upon observation
of unexpected events (e.g., detection of unanticipated obstacles).
The underlying theory is developed as an extension of a grid-
based path planning algorithm, calledν⋆, that was formulated
in the framework of probabilistic finite state automata (PFSA)
and language measure from a control-theoretic perspective. The
proposed concept has been validated on a simulation test bedthat
is constructed upon a model of typical autonomous underwater
vehicles (AUVs) in the presence of uncertainties.

1. MOTIVATION AND INTRODUCTION

In general, path planning of robots (e,g,, autonomous under-
water vehicles (AUVs) and unmanned aerial vehicles (UAVs))
aims to optimize either travel time, energy usage, or safetyof
operations. Recently, much work has been reported for path
planning in the presence of environmental uncertainties. Afew
examples follow.

Garau et al. [1] used the A⋆ algorithm for path planning
of AUVs by taking the effects of ocean currents into con-
sideration. Pêtrès et al. [2] reported path planning of AUVs,
in which a fast marching (FM) algorithm was used to model
the effects of ocean currents as an anisotropic cost function.
Rhoads et al. [3] solved a dynamic Hamilton Jacobi Bellman
(HJB) equation to obtain the optimal ”time-to-go“ with a
discontinuous and dynamic cost function for path planning
in the presence of ocean currents. Recently, Lolla et al. [4]
developed a methodology for AUV path planning, in which
the concept of flow advection was combined with nominal
vehicle motion until the desired goal was reached. Majumdar
et al. [5] generated libraries in the off-line pre-computation
stage for online robust motion planning, where some of the
library members were regenerated for collision avoidance.
Blackmore et al. [6] designed a chance-constrained predictive
stochastic controller to ensure that the probability of failure

⋆ This work was supported in part by the U.S. Army Research Laboratory
and the U.S. Army Research Office under Grant No. W911NF-13-11-0461,
and by the U.S. Air Force Office of Scientific Research (AFOSR)under
Grant no. FA9550-12-1-0270. Any opinions, findings and conclusions or
recommendations expressed in this publication are those ofthe authors and
do not necessarily reflect the views of the sponsoring agencies.

(e.g., collision) is less than a specified threshold even in the
presence of randomly varying uncertainties. Chakravorty and
Kumar [7] used the concepts of probabilistic roadmaps (PRM)
and rapidly exploring random trees (RRT) [8] to construct
feedback controllers for robust planning in the presence ofmo-
tion uncertainties. However, in many path planning algorithms
reported in literature, the offline computation does not take
into account potential runtime constraints (e.g., unanticipated
obstacles), and online adaptation is computationally infeasible.

Robots (e.g., AUVs) are expected to operate in environ-
ments with external disturbances and hence, considering the
effects of these disturbances is critical for mission success.
Consequently, the algorithms of path planning must be capable
of real-time execution on in-situ computational platforms. To
meet these challenges, Chattopadhyay et al. [9] formulated
theν

⋆ algorithm in the framework of probabilistic finite state
automata (PFSA) from a control-theoretic perspective. Theν

⋆

algorithm performs robot path planning for a specified goal by
optimizing the language measure of the PFSA model [10][11]
that represents the workspace for the robot. In this setting,
optimal path planning is equivalent to maximization of a
PFSA’s performance, based on a quantitative measure of prob-
abilistic regular languages. This concept of robot path planning
jointly maximizes the probability of reaching the target and the
probability of staying clear of the obstacles. Such a notionof
goal-directed safe (e.g., Pareto optimization [12] of reaching
the goal and collision avoidance) navigation of autonomous
vehicles is particularly important in the context of planning
in the presence of disturbances, especially to ensure collision-
free navigation. In this case, Markov decision process (MDP)
tools may not be suitable because of the requirement of robust
adaptation in real time [5]. The situation becomes worse for
lack of observability, because the formulation of a partially
observable Markov decision process (POMDP) would become
computationally intractable for a real-time solution.

Language-measure-theoretic path planning offers an inher-
ent advantage of global monotonicity [9] in the sense that
the solution iterations are finite and that a sequence of final
waypoints is generated. The PFSA, constructed out of the
robot’s workspace, is optimized via an iterative sequence of
combinatorial operations to maximize the language measure
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vector elementwise. Nevertheless, theν
⋆ algorithm is different

from a conventional search algorithm in the sense that it auto-
matically generates a measure gradient (e.g., no potentialfunc-
tion required), which is maximized at the goal. Furthermore,
the time complexity of each iteration step is linear relative to
the problem size (e.g., the dimension of the discretized state
space), and computation of the measure vector in a distributed
fashion makes the algorithm suitable, especially for high-
dimensional planning. These advantages render the presented
method potentially suitable for (offline) planning and (online)
adaptation in the presence of uncertainties.

As an extension of theν⋆ algorithm [9], this paper formu-
lates an algorithm of grid-based robot path planning, which
has been validated on a simulation test bed of autonomous
underwater vehicles (AUVs) in the presence of uncertain
ocean currents and actuation errors. Major contributions of
the paper beyond the work on theν⋆ algorithm, reported by
Chattopadhyay et al. [9], are outlined below.

• The notion of uncertainty is associated with the uncon-
trollable transitions in a controlled autonomous system.
This concept is different from the common practice of
superimposing the effects of disturbances on the planned
trajectory of a robotic system.

• The offline infinite-horizon optimal plan is locally up-
dated by online finite-horizon adaptive re-planning upon
observation of unexpected events (e.g., detection of unan-
ticipated obstacles).

2. BRIEF REVIEW OF LANGUAGE MEASURETHEORY

This section summarizes the concept of (signed real) lan-
guage measure [10] of probabilistic finite state automata
(PFSA) [13] and the role of language measure for optimal
control [11] of PFSA. While the theories of language measure
and the associated optimal control are developed in [10][11],
this section introduces pertinent definitions and summarizes
the essential concepts that are used in the sequel.

Definition 2.1 (Alphabet and Word) An alphabetΣ is a
nonempty finite set of symbols. A finite-length string of symbols
fromΣ is called a word and the empty word (i.e,, a string of no
symbols) is denoted asǫ. A wordw of ℓ symbols has length
|w| = ℓ and |ǫ| = 0. The set of all words (includingǫ) is
denoted asΣ⋆; the set of all words of lengthℓ is denoted as
Σℓ; and the set of all infinite strings of symbols is denoted as
Σω.

Referring to Definition 2.1, the cardinalities of the following
sets are noted below,

• |Σ| ∈ N, whereN is the set of positive integers.
• |Σℓ| = |Σ|ℓ for any positive integerℓ.
• |Σ⋆| = |N|, i.e.,Σ⋆ is countably infinite (ℵ0).
• |Σω| = |R|, i.e.,Σω is uncountably infinite (continuum).

Definition 2.2 (Prefix and Suffix) LetΣ be an alphabet. The
operation of concatenation of two words is closed onΣ⋆, i.e.,

if w = xy, thenw ∈ Σ⋆ ∀x, y ∈ Σ⋆; and ǫ is the identity
element of the concatenation monoid [14]. In that case,x is
called a prefix ofw, andy is called a suffix ofw.

Definition 2.3 (PFSA) A probabilistic finite state automaton
(PFSA) over an alphabetΣ is a quintuple

G , (Q,Σ, δ, π,χ), where

• Q is the nonempty finite set of states, i.e.,|Q| ∈ N;
• δ : Q × Σ⋆ → Q is the transition map that satisfies the

following conditions:∀q ∈ Q ∀s ∈ Σ ∀w ∈ Σ⋆

δ(q, ǫ) = q; and δ(q, ws) = δ
(

δ(q, w), s
)

.
• π : Q × Σ⋆ → [0, 1] is the morph function of state-

specific symbol generation probabilities, which satisfies
the following conditions:∀q ∈ Q ∀s ∈ Σ ∀w ∈ Σ⋆

π(q, s) ≥ 0;
∑

s∈Σ π(q, s) = 1; and
π(q, ǫ) = 1; π(q, ws) = π(q, w) × π(δ(q, w), s).

• χ : Q → [−1, 1]|Q| is the vector-valued characteristic
function that assigns a signed (normalized) real weight
to each state.

The (|Q| × |Q|) state transition probability matrixP is
defined as

P = [Pjk], wherePjk ,
∑

s∈Σ: δ(qj ,s)=qk

π(qj , s) ∀qj , qk ∈ Q

Note: P is a non-negative stochastic matrix [15].

Remark 2.1 The restrictionsδ|Q×Σ → Q and π|Q×Σ →
[0, 1] of the functionsδ andπ in Definition 2.3 can be directly
obtained from the local structure of the PFSA. The unrestricted
functionsδ andπ can then be computed over the entire domain
by using the recursive relations listed in Definition 2.3. Physi-
cal interpretations ofχ are briefly provided in Subsection 2-A
while the details are reported in Definition 5 of [10].

Definition 2.4 (Language) Let(Q,Σ, δ, π,χ) be a PFSA. The
language generated by all words, which terminates at a state
qk ∈ Q after starting fromqj ∈ Q, is defined as

L(qj , qk) , {w ∈ Σ∗ : δ(qj , w) = qk} (1)

The language generated by all words, which may terminate at
any stateq ∈ Q after starting fromqj ∈ Q, is defined as

L(qj) ,
⋃

q∈Q

L(qj , q) (2)

Given a PFSA(Q,Σ, δ, π,χ), the following facts are con-
sidered before the notion of a measure is introduced on the
languageL (see Definition 2.4).

• The languageL is an at most countable (i.e., finite or
countably infinite) set becauseL ⊆ Σ⋆. Therefore, the
power set2L is either finite or uncountable; if uncount-
able, the cardinality of2L is the same as that ofR or
that of the standard Borel algebraB(R) [16].

• A measurable space(L,Σω2L) can be constructed where
every singleton set of a semi-infinite string of symbols,
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whose suffix is a word inL, is a measurable set [16], [10].
For brevity, theσ-algebraΣω2L is denoted as2L, because
every wordw ∈ L is prefixed by a semi-infinite string of
symbols. That is,w representsxw and{w} ∈ 2L implies
{xw} ∈ Σω2L, wherex ∈ Σω is arbitrary.

Definition 2.5 (Language Measure) LetL(qj , qk) and L(qj)
be languages on a PFSA(Q,Σ, δ, π,χ) and letθ ∈ (0, 1) be
a parameter. A signed real measureµjk

θ : 2L(qj ,qk) → R (that
satisfies the requisite axioms of measure [16]) is defined as

µ
jk
θ (L(qj , qk)) ,

∑

w∈L(qj,qk)

θ(1 − θ)|w|π(qj , w)χ(qk) (3)

The measure of the languageL(qj) is defined as

ν
j
θ(L(qj)) ,

∑

qk∈Q

µ
jk
θ (L(qj , qk)) (4)

Following Definition 2.5, the set of language measures for
a PFSA is interpreted as a real-valued vector of dimension
|Q| and is denoted asνθ whosejth component isνjθ ∈ R

corresponding to the stateqj ∈ Q. Following Theorem 1
in [10], the language measure of the PFSA(Q,Σ, δ, π,χ) in
Eq. (2.5) is expressed vectorially as

νθ = θ[I− (1 − θ)P]−1
χ (5)

where P is the state transition matrix (see Definition 2.3)
and the inverse on the right side exists for allθ ∈ (0, 1).
Furthermore, as θ → 0+, the matrix θ[I − (1 − θ)P]−1

converges to the Cesaro matrixP , limk→∞
1
k

∑k−1
j=0 Pj .

Then, the limiting measure vectorν0 is obtained as [11]

ν0 , lim
θ→0+

νθ = lim
θ→0+

θ[I− (1 − θ)P]−1
χ = P χ (6)

whereI is the(|Q| × |Q|) identity matrix.

A. Control Perspectives

From the perspectives of discrete-event optimal control [11],
the limiting language measure vectorν0 in Eq. (6) is physi-
cally interpreted as follows. The language measure of a symbol
string starting at a stateqj ∈ Q is interpreted to be the product
of the morph probability (conditioned on the stateqj) and
the characteristic weightχk of the terminating stateqk. For
example, if qk is a desirable state (e.g., goal) to terminate,
then χk should be assigned to be positive; similarly,χk

should be negative for an undesirable terminating state (e.g.,
obstacle)qk. Thus, the characteristic weights are assigned
to represent the control specifications (i.e., larger positive
weights to more desirable states) and the language measure
represents the goodness of the particular string relative to the
given specification and the PFSA model [10]. In the sense of
Definition 2.5, the limiting language measureνj0 sums up to
the limiting measures of each string starting from stateqj .
Thus, νj0 captures the goodness ofqj based on not only its
own characteristic weight, but also on how good are the strings
that will be generated fromqj in the future. In essence, the

language measure provides a quantitative comparison of viable
control policies [11].

Definition 2.6 (Control Philosophy) Letqj
s
−→ qk be the state

transition under occurrence of the events. If the events is
disabled atqj by a supervisory action, then this state transition
from qj to qk will be prevented by forcing the plant to stay at
the original stateqj . Thus, disabling an events at a given state
q results in deletion of the original transition and appearance
of the self-loopδ(q, s) = q with the probability of occurrence
of s at stateq remaining unchanged in the supervised plant
and also in the unsupervised plant.

Definition 2.7 (Controllable Transitions): For a given plant,
transitions that can be disabled in the sense of Definition 2.6
are defined to be controllable; a transition that is not con-
trollable is called uncontrollable. The set of controllable
transitions in a plant is denoted asC.

If the supervisor is allowed to disable all subsets (including
the empty set∅ and the setC itself) of the setC of controllable
transitions, then there exists a bijection between the set of
all possible supervision policies and the power set2C; in
other words, there are2|C| possible supervisors and each
supervisor is uniquely identifiable with a subset ofC. Thus,
the language measureν allows a quantitative comparison of
different policies.

Definition 2.8 (Controlled PFSA and Optimal Measureν⋆)
An optimally controlled (or supervised) PFSAS ,
(Q,Σ, δ, π,χ,C) is a sextuple that maximizes its language
measureν0 by disabling a selected subset ofC. The optimized
measureν0 is denoted asν⋆.

3. DESCRIPTION OF THESIMULATION TEST BED

This section describes the simulation test bed that is built
upon a rigid-body dynamic model of the planar motion of
a generic autonomous underwater vehicle (AUV) [17]. The
rationale for adopting such a simple model is that the usage
of the proposed language-measure-theoretic concepts can be
unambiguously presented to explain how to control the AUV
motion in the presence of environmental disturbances and
actuation errors. Nevertheless the theory is applicable ona
dynamically feasible graph with any degree of details.

The model takes into account the effects of yaw (ψ) and
the velocity vector of surge rate (u), sway rate (v), and yaw
rate (r), i.e, v ,

[

u v r
]T

; but the effects of heave (z),
roll (φ) and pitch (θ) are assumed to be negligible [17]. The
resulting equations of motion are obtained as

Mv̇ +C(v)v +D(v)v = τ and ψ̇ = r (7)

whereM = M
T is the inertia matrix;C(v) = −C(v)T is

the Coriolis centripetal matrix;D(v) is the damping matrix;
and τ ,

[

τu τv τr
]T

is the vector of the system inputs
that represent the forces generated by the on-board actuators
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as well as those produced by environmental disturbances (e.g.,
ocean current). In this model, control actions are generated as
functions of the surge rate (u) and yaw rate (r) only, i.e., the
vehicle control input is restricted to beτcon =

[

τu 0 τr
]T

.
Surge and sway components of the ocean current vectorvc

are modeled in terms of its directionβ and yaw angleψ as

uc = |vc| cos(β − ψ) and vc = |vc| sin(β − ψ) (8)

Assuming that the vehicle’s onboard controller maintains
the desired yaw angleψ during its course of motion (i.e.,
letting ψ̇ = r ≡ 0), the dynamic motion model is further
simplified to obtain the travel distanceF and G along the
surge and sway directions [17], respectively, as

F(τu, uc) ,

∫ tf

t0

u(t) dt and G(vc) ,

∫ tf

t0

v(t) dt (9)

4. PROBLEM FORMULATION

This section formulates the problem of path planning for
planar motion of robots in the presence of uncertainties
induced by environmental disturbances, where the workspace
is partitioned as a finite number of cells. Major assumptions
in the problem formulation are listed below.

1) Partial knowledge of the static obstacles
2) No moving obstacles.
3) Partitioning of the workspace into cells as a regular grid.
4) Bounded disturbances and actuation errors with the

errors of PFSA states being limited to neighboring cells
of the origin cell.

Depending on the resolution of planning, a cell may
represent a single location or a sub-region in the planning
environment. The neighborhood of a cell is defined by taking
into account feasible dynamics of transitions to that cell.

The robot motion is modeled as controllable transitions
among the cells as the robot chooses to execute its moves; such
moves may depend on the fidelity of motion discretization and
the robot’s intrinsic dynamics. Based on the specificationsof
inter-cell transitions, each cell in the partitioned workspace is
modeled as a PFSA state, where controllable transitions are
defined by the corresponding state transition map.

Let a PFSAGNAV = (Q,Σ, δ, π,χ) (see Definition 2.3)
represent the navigation model of a robot, where the states in
Q are cell locations in the original workspace and the alphabet
size |Σ| is determined from the number of events that may
cause controllable transitions. For simplicity of exposition,
this paper considers a planar robot that is allowed to freely
rotate about its geometric center, implying that|Σ| = 9. As
an example, let the robot be in the stateq (see Fig 1) and then
let the robot make a choice to move to one of the states labeled
1 through8 or it may stay atq. While the state transition map
δ (restricted toQ × Σ) is constructed in the neighborhood of
a PFSA state and the morph functionπ (restricted toQ× Σ)
are constructed under the condition that, with negligible state
estimation error, the robot canchooseany controllable transi-
tion to execute at a cell. Hence, all controllable transitions at

Fig. 1. Illustration of the effects of uncontrollable transitions due to the
disturbances. It is shown how uncontrollable transitions may cause the robot
to end up in a different neighboring state of the origin cell,thus interfering
with control actions.

a cell are assumed to be equally likely for the unsupervised
automatonGNAV . The vector-valued characteristic function
χ (see Definition 2.3) is chosen based ona proiri known
goodnessof individual states, explained in Subsection 2-A.
Since the environment map could be only partially known,
the robot must adapt to the unforeseen obstacles in real time.

Uncertain (e.g., fault-induced and environmental) distur-
bances may cause uncontrollable transitions in the robot
motion as seen in the example of Fig. 1, where the robot may
erroneously move to an unplanned state, thus interfering with
control actions of robot path planning (see Assumption #4
at the beginning of this section). Therefore, probabilistic
decisions of path planning need to be made based on the set of
the available controllable actions of the robot to mitigatethe
effects of these disturbances. In this model, the state transition
probabilities serve as a discretized representation of theeffects
of disturbances on the robot dynamics, where the transition
probability P(qj |qi, s) represents the probability of reaching
stateqj after executing an actions from stateqi. Using the
simplified model developed in the last section, the vehicle’s
relative position in the next time step (from the previous
position after it makes a moves ∈ Σ in the global Cartesian
coordinate frame) is expressed as

∆x = F cos(ψ)−G sin(ψ) (10)

∆y = F sin(ψ) +G cos(ψ) (11)

The corresponding transition probabilitiesP under the spec-
ified simplifying assumptions are then computed in terms of
the probabilitiesP as:

P(qj |qi, s) = P([∆x,∆y] ∈ qj |qi, s) (12)

In the absence of disturbances,P(qj |qi, s) is either 0 or 1
such thatP(δ(qi, s)|qi, s) = 1 and P(qj |qi, s) = 0 ∀qj ∈
Q \ δ(qi, s).

While the PFSAGNAV specifies the discretized motion of
the planar robot, the matrixP contains information about the

4



effects of the disturbances on its motion. With the knowledge
of GNAV and P, the path planning problem is reduced to
the optimal supervision problem ofGNAV (in the sense of
Definition 2.8) in the presence of disturbances specified byP.
Detection of unforeseen obstacles during the robot operation
may result in a change of the characteristic weight vectorχ.
In this context, new obstacles are considered as undesirable
terminating states and, therefore, are assigned negative char-
acteristic weights (see Subsection 2-A).

5. SOLUTION APPROACH

Formulation of the path-planning problem as a PFSA-based
navigation allows computation of optimally feasible pathsvia
the language-measure-theoretic optimization scheme. Forthe
unsupervised model, the robot is free to choose from any of
the defined controllable events from any cell in the workspace.

The optimization algorithm, presented as Algorithm 1, se-
lectively disables controllable transitions to ensure that the
measure vector of the navigation automaton is elementwise
maximized. Selected controllable transitions are disabled to
optimizes the state transition probability matrixP (see Defini-
tion 2.3). This is accomplished by maximizing the limiting
measure vector (see Eq. (6)) in the sense of Definition
2.8, which corresponds to the optimally supervised PFSA
model for the robot. This implies that the supervised robot
is constrained only to choose among the enabled moves at
each state such that a Pareto trade-off is achieved between
minimization of the collision probability and simultaneous
maximization of the goal-reaching probability. An important
point to note is that even though the measure values are based
on optimization of a probabilistic finite state automata, an
optimal and feasible plan is obtained that can be executed
in a deterministic sense.

For planning in the presence of environmental disturbances,
it is critical to consider the robot’s vulnerability to uncertain-
ties created by such disturbances (see Fig. 1). In the work
presented in [11][9], the measure vector was optimized by
ignoring the uncontrollable transitions arising from the uncer-
tainties. However, ignoring the uncontrollable transitions in the
presence of disturbances could be fatal for autonomous robots.
In this paper, the effects of the uncontrollable transitions are
taken into consideration while optimizing the measure vector
of the navigation automaton. In this framework, a combinato-
rial sequence of enabling and disabling of transitions optimizes
a weighted combination of minimizing the probability of col-
lision and maximizing the probability of reaching the goal in
the presence of known environmental disturbances. Depending
on the strength of environmental disturbances, the controller
attempts to make an optimal trade-off between performance
(i.e., path length) and robustness to uncertainties.

With Monte Carlo simulation of the disturbances on the
test bed, conditional probabilities for the robot (i.e., AUV) to
terminate at a neighboring stateqj are generated as

P(qj |qi, s) such that
∑

qj∈N(qi)

P(qj |qi, s) = 1 (13)

whereqj ∈ Q is a neighboring state ofqi ands ∈ Σ represents
the control action.

Let GNAV = (Q,Σ, δ, π,χ) be the unsupervised navigation
automaton. From the knowledge of the morph probability
π and the conditional probability distributionP due to the
environmental disturbances, a family of probability matrices,
PG(·, ·, j), j = 1, 2, · · · , |N(qi)| is constructed, where|N(qi)|
is cardinality of the setN(qi) of neighborhood states (includ-
ing itself) of the stateqi (e.g., |N(qi)| = 9 for any internal
state of a planar robot), defined as

PG(qi, s, qj) , P(qj |qi, s)× π(qi, s) ∀qi ∈ Q (14)

where s ∈ Σ is a control action andδ(qi, s) = qj is a
neighboring state (including itself) ofqi. ν

N(qi)
θ (used in line

24 of Algorithm 1) is a local measure vector of stateqi and
consists of the measure values of the statesqj ∈ N(qi). The
transition matrixPG is optimized in an iterative fashion by
Algorithm 1 such that the strings, which are likely to lead to
collision in the presence of the disturbances, are disabled. At
the same time, feasible paths to the goal are retained so that
the measure vector is elementwise maximized.

For path planning in a large-dimensional state space, a
distributed iterative scheme is recommended for the compu-
tation of the language measure, which was reported in an
earlier publication [18]. The algorithm of optimized language
measure vector is presented as Algorithm 1.

Salient properties of Algorithm 1 are delineated below.

• Computation of the uncertain behavior of the robot’s
motion caused by environmental disturbances: The se-
quence of disabling and enabling actions at the robot’s
discretion is generated by (elementwise) maximization of
the language measure vector. To relax the assumption of
restriction of uncontrollable transitions to the neighboring
states, a probability distribution over the entire workspace
could be considered instead of using a local measure
vector in line 24 of Algorithm 1. This is also true in
trajectory planning for UAVs, where the environmental
disturbances may require widening of its flight envelope.

• Generation of the optimized measure vectorν
⋆ for robot

navigation based on its PFSA model, along with the
associated optimized outputsπ⋆ and P ⋆

G . The path to
the goal from arbitrary initial locations is obtained by
following the gradient of measure vector.

Real-time obstacle avoidance in the presence of disturbances
is a difficult problem due to the disturbance-induced uncon-
trollable transitions. An online re-planning algorithm must
propagate the motion model in time and make sure that the
robot is clear of the obstacle. In this regard, one may take
advantage of the fact that the stochastic navigation matrix
(i.e., the optimized state transition matrix of the controlled
PFSA) contains the information on the disturbances. To make
a local adaptation, the original infinite horizon measure vector
is augmented with the information on recently discovered ob-
stacles. The effects of this obstacle are considered on a finite-
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Fig. 2. Optimal paths under different directions of the ocean current. (The vehicle is constrained to stay in the box and not hit the walls.)

Algorithm 1 Distributed updating of measure vector for planning
in the presence of disturbances
Require: GNAV(Q,Σ, δ, π,χ), θ,PG

Ensure: ν
⋆, π⋆,P⋆

G

1: Initialize ∀ qi ∈ Q, νi
θ
= 0.

2: Pdum
G

= PG

3: πdum = π
/ ∗ ∗ Begin infinite asynchronous loop∗ ∗ /

4: while true do
5: for each cellqi ∈ Q do
6: if N(qi) 6= ∅ then
7: for each nodeqj ∈ N(qi) do
8: Queryνj

θ
andχj

/ ∗ ∗ Enabling and Disabling transitions for Control∗ ∗ /
/ ∗ ∗ Compare measure with neighbors and allow transitions
only to the better neighbors∗ ∗ /

9: if νj
θ
< νi

θ
then

10: if
∑

k:qk∈N(qi)
PG(qi, sj , k) 6= 0 then

11: PG(qi, si, :) = PG(qi, si, :) + Pdum
G

(qi, si, :)
12: PG(qi, sj , :) = 0
13: π(qi, si) = π(qi, si) + πdum(qi, si)
14: π(qi, sj) = 0
15: end if

/ ∗ ∗ where,δ(qi, si) = qi & δ(qi, sj) = qj ∗ ∗ /
/ ∗ ∗ Disabling ∗ ∗ /

16: else
17: if

∑
k:qk∈N(qi)

PG(qi, sj , k) == 0 then
18: PG(qi, sj , :) = Pdum

G
(qi, sj , :)

19: PG(qi, si, :) = PG(qi, si, :)− Pdum
G

(qi, si, :)
20: π(qi, si) = π(qi, si)− πdum(qi, si)
21: π(qi, sj) = πdum(qi, sj)

/ ∗ ∗ Enabling∗ ∗ /
22: end if
23: end if
24: νi

θ
=

∑
k:qk∈N(qi)

(1− θ)PG(qi, sk, :)ν
N(qi)
θ

+ θ χ
i

/ ∗ ∗ Node updating∗ ∗ /
25: end for
26: end if
27: end for
28: end while

time horizon of re-planning by using the already optimized
stochastic navigation matrixP⋆

G. However, as the stochastic
matrix was already optimized by considering the effects of
disturbances, the re-planning keeps the vehicle clear of the
obstacle under such disturbances. The quality of adaptation
is expected to improve with an increase in the re-planning
time horizon. Hence, a choice of the re-planning time-horizon
(T ) depends on the trade-off between the computation time
and quality of the solution. The steps involved in re-planning
are succinctly presented in Algorithm 2, which efficiently
computes a feasible path. This is accomplished by removing

those strings that reach the goal via the newly detected obstacle
states from the language generated by any state of the PFSA.
The measure vector is consequently updated by removing
those strings from the original optimal language generatedby
the states of the PFSA, i.e., by subtracting the measure of
such strings (see Definition 2.5) from the original language
measure. The resulting path improves monotonically in the
re-planning time horizon because the estimate of the measure
of such strings improves monotonically.

Algorithm 2 Updating of measure vector for re-planning
Require: GNAV(Q,Σ, δ, π⋆,χ), θ,P⋆

G
, ν⋆, |T |

Ensure: ν
⋆
replan

,P⋆
G, replan, π

⋆
replan

1: Updateχ with new information about obstacles
2: Initialize νθ = ν

⋆ & n = 1
3: Pdum

G
= P⋆

G
andπdum = π⋆

4: while n ≤ |T | do
5: Lines4 through24 of Algorithm 1
6: n = n+ 1
7: end while

Remark 5.1 The time complexity of Algorithm 1 isτ1 ∼
O(|Q||N(q)|2), for a PFSA with|Q| states and|N(q)| is the
maximum neighborhood size of the PFSA states [18]. The time
complexity of Algorithm 2 isτ2 ∼ O(|T ||N(q)|), whereT is
the finite-time horizon of re-planning.

6. INTERPRETATION OF THERESULTS

This section presents pertinent results of AUV simulation
for the proposed method of path planning in the presence of
uncertainties due to ocean currents. To justify the usage of
a disturbance-aware path planning algorithm for AUVs and
to demonstrate the algorithm’s efficacy to react to different
types of disturbances, Fig. 2 shows the (simulated) optimal
paths of an AUV that is navigated from pointA to point B
in a similar environment with three different directions ofthe
ocean current. The optimal nominal paths in these three cases
are significantly different, because the paths are calculated to
accommodate the disturbances due to the ocean current.

During actual navigation, the AUV is likely to deviate from
the nominal trajectory; however, it finds a path from any
arbitrary state to the terminal state by following the gradient
of the optimized measure vector. The nominal trajectory in
each of the three plates in Fig. 2 shows theshortest safepath
based on the expected deviations due to the disturbances.

Figure 3 presents a scenario, where the environment is
only partially known a priori and an unforeseen obstacle
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Fig. 3. Real-time re-planning over a finite time horizonT .

at point D is observed when the AUV reaches pointC.
Consequently, the original plan (i.e., without the knowledge of
the obstacle atD) is altered to avoid a potential collision. In
Fig. 3, the uncontrollable transitions (that are due to the ocean
current) tend to push the vehicle upstream and path re-planning
attempts to by-pass the obstacle atD; however, the amount of
time available for online re-planning is limited. Algorithm 2 is
iteratively executed to improve the re-planning monotonically
with an increase in the span|T | of time horizonT . As seen
for |T | = 2, 5, and 10 in Fig. 3, the respective re-plans are
generated to navigate the AUV further down so that even if the
vehicle is drifted upwards by the ocean current, it would still
be able to avoid a collision with the obstacle. By increasing
the re-planning time horizon from|T | = 2 to |T | = 10,
the plan becomes more robust to collision as it attempts to
keep the vehicle clear of the obstacle by a larger distance
by optimizing the margin of error due to the ocean-current-
induced disturbances. A small re-planning time horizon results
in local greedy search of the configuration space; it limits
the effects of the new obstacle to a narrow region around it.
A smaller re-planning time horizon also limits the expected
deviation of the vehicle due to disturbances.

A global optimal policy could be significantly different from
a local greedy solution obtained in limited time as seen in
Fig. 3, where the the re-planned path for|T | = 15 is different
from those for|T | = 2, 5, and10. While Algorithm 2 makes
local perturbations in the initial plan to keep the AUV clear
of an observed obstacle atD, a sufficiently large re-planning
time horizon (e.g.,|T | = 15 in Fig. 3) generates an optimal
path such that the local changes in the re-planned path may
finally cause convergence to a global optimal path.

As the original optimal stochastic navigation matrix contains
information of the disturbance, even a small re-planning time
horizon could keep the AUV clear of the obstacle in the
presence of disturbances; however, robustness of the plans
improve monotonically with increase in the re-planning time
horizon parameter|T |. In essence, a choice of|T | depends
on the in-situ computational capabilities of the AUV and the
time available for online updating of the path plan, which may

depend on the AUV’s speed and observation window.
For time-critical operations with limited computational ca-

pabilities, a goal of re-planning is to ensure safety while
maintaining an accepted level of performance (e.g., path
length). This trade-off could be achieved in the language-
measure-theoretic framework by selecting the characteristic
weight of new-obstacle states during re-planning, where an
increased penalty on collision with an obstacle would enhance
safety at the expense of a longer deviation from the original
plan. This is achieved by having the characteristic weightsof
the newly observed obstacles states asK ⋆ χobs, where the
multiplicative constantK is a positive real parameter, while
all other characteristic weights remain unchanged. Figure4
shows the effects of changing the characteristic weight vector
for the case|T | = 2 in Fig. 3. As seen in Fig. 4, the safety
margin is enhanced by increasingK, which is capable of
accommodating larger anomalous behavior of the robot in the
presence of ocean currents at the expense of an increased path
length. For a family of admissible values ofK, the convex hull
of the generated solutions would lead to a Pareto-optimal front
representing tradeoff between safety and performance. Forany
particular real-time operation, the choice of the parameter K
is dependent on computational capabilities and time available
for re-planning as well as strength of disturbances.
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7. SUMMARY, CONCLUSIONS ANDFUTURE WORK

This paper presents a generalized framework for robust
path planning of AUVs in the presence of environmental
disturbances and actuation errors. Concepts of recently devel-
oped language measure-based optimization [10][11] have been
applied to demonstrate successful navigation of an autonomous
robot moving in an uncertain and partially known environment.
The algorithm is robust to both modeling and environmental
uncertainties; however, these uncertainties must be bounded.
The efficacy of the proposed concept is demonstrated by
numerical simulation on a test bed of an AUV moving in
the presence of ocean currents and unforeseen obstacles. The
paper is summarized below.
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1) It presents a path planning philosophy that is fundamen-
tally different from the ones reported in literature.

2) It performs online adaptation of the planning algorithms
to unanticipated obstacles in the presence of distur-
bances.

Many path planning algorithms, reported in the current litera-
ture, may not be able to efficiently handle collision avoidance
in real time in the presence of disturbances, primarily due
to overwhelming computational requirements. It is shown in
this paper through numerical simulations that the language
measure-theoretic algorithm can handle unanticipated obsta-
cles in real time in the presence of disturbances. However,
actual performance comparisons with state-of-the-art planning
is yet to be demonstrated by experimental validation.

While there are numerous research areas for robot path
planning based on language-measure-theoretic concepts, the
following topics are recommended for future research.

1) Construction of a biased sampling scheme while up-
dating the language measure of nodes in a distributed
fashion to enhance the quality of path planning and to
mitigate the computational cost. Such a scheme is impor-
tant for a trade-off betweenexplorationandexploitation.

2) Extension of the proposed method of robot path planning
under time constraints as well as by minimizing the
energy consumption.

3) Validation of the proposed method by laboratory exper-
imentation on a networked robotic test bed with non-
holonomic constraints [8].

4) Performance comparison with other methods like those
presented in [5][6][7].
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